·rpp
</>

rpp

zpankz/mcp-skillset

Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'.

4Installs·0Trend·@zpankz

Installation

$npx skills add https://github.com/zpankz/mcp-skillset --skill rpp

SKILL.md

Generate hierarchical knowledge structures where each level achieves maximum explanatory power with minimum nodes through recursive application of the Pareto principle.

| Level | Role | Node % | Coverage | Ratio to L3 |

| L0 | Meta-graph/Schema | 0.8% | 51% | 6-9:1 to L1 | | L1 | Logic-graph/Atomic | 4% | 64% | 2-3:1 to L2 | | L2 | Concept-graph/Composite | 20% | 80% | — | | L3 | Detail-graph/Ground-truth | 100% | 100% | — |

Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'. Source: zpankz/mcp-skillset.

View raw

Facts (cite-ready)

Stable fields and commands for AI/search citations.

Install command
npx skills add https://github.com/zpankz/mcp-skillset --skill rpp
Category
</>Dev Tools
Verified
First Seen
2026-02-01
Updated
2026-02-18

Quick answers

What is rpp?

Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'. Source: zpankz/mcp-skillset.

How do I install rpp?

Open your terminal or command line tool (Terminal, iTerm, Windows Terminal, etc.) Copy and run this command: npx skills add https://github.com/zpankz/mcp-skillset --skill rpp Once installed, the skill will be automatically configured in your AI coding environment and ready to use in Claude Code or Cursor

Where is the source repository?

https://github.com/zpankz/mcp-skillset