rpp
✓Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'.
Installation
SKILL.md
Generate hierarchical knowledge structures where each level achieves maximum explanatory power with minimum nodes through recursive application of the Pareto principle.
| Level | Role | Node % | Coverage | Ratio to L3 |
| L0 | Meta-graph/Schema | 0.8% | 51% | 6-9:1 to L1 | | L1 | Logic-graph/Atomic | 4% | 64% | 2-3:1 to L2 | | L2 | Concept-graph/Composite | 20% | 80% | — | | L3 | Detail-graph/Ground-truth | 100% | 100% | — |
Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'. Source: zpankz/mcp-skillset.
Facts (cite-ready)
Stable fields and commands for AI/search citations.
- Install command
npx skills add https://github.com/zpankz/mcp-skillset --skill rpp- Source
- zpankz/mcp-skillset
- Category
- </>Dev Tools
- Verified
- ✓
- First Seen
- 2026-02-01
- Updated
- 2026-02-18
Quick answers
What is rpp?
Generates hierarchical knowledge graphs via Recursive Pareto Principle for optimised schema construction. Produces four-level structures (L0 meta-graph through L3 detail-graph) where each level contains 80% fewer nodes while grounding 80% of its derivative, achieving 51% coverage from 0.8% of nodes via Pareto³ compression. Use when creating domain ontologies or knowledge architectures requiring: (1) Atomic first principles with emergent composites, (2) Pareto-optimised information density, (3) Small-world topology with validated node ratios (L1:L2 2-3:1), or (4) Bidirectional construction. Integrates with graph (η≥4 validation), abduct (refactoring), mega (SuperHyperGraphs), infranodus (gap detection). Triggers: 'schema generation', 'ontology creation', 'Pareto hierarchy', 'recursive graph', 'first principles decomposition'. Source: zpankz/mcp-skillset.
How do I install rpp?
Open your terminal or command line tool (Terminal, iTerm, Windows Terminal, etc.) Copy and run this command: npx skills add https://github.com/zpankz/mcp-skillset --skill rpp Once installed, the skill will be automatically configured in your AI coding environment and ready to use in Claude Code or Cursor
Where is the source repository?
https://github.com/zpankz/mcp-skillset
Details
- Category
- </>Dev Tools
- Source
- skills.sh
- First Seen
- 2026-02-01