google-gemini-embeddings
✓This skill provides complete coverage of Google Gemini embeddings API (gemini-embedding-001) for building RAG systems, semantic search, document clustering, and similarity matching. Use when implementing vector search with Google's embedding models, integrating with Cloudflare Vectorize, or building retrieval-augmented generation systems. Covers SDK usage (@google/genai), fetch-based Workers implementation, batch processing, 8 task types (RETRIEVAL_QUERY, RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY, etc.), dimension optimization (128-3072), and cosine similarity calculations. Prevents 8+ embedding-specific errors including dimension mismatches, incorrect task types, rate limiting issues (100 RPM free tier), vector normalization mistakes, text truncation (2,048 token limit), and model version confusion. Includes production-ready RAG patterns with Cloudflare Vectorize integration, chunking strategies, and caching patterns. Token savings: ~60%. Production tested. Keywords: gemini embeddings, gemini-embedding-001, google embeddings, semantic search, RAG, vector search, document clustering, similarity search, retrieval augmented generation, vectorize integration, cloudflare vectorize embeddings, 768 dimensions, embed content gemini, batch embeddings, embeddings api, cosine similarity, vector normalization, retrieval query, retrieval document, task types, dimension mismatch, embeddings rate limit, text truncation, @google/genai
Installation
SKILL.md
This skill provides comprehensive coverage of the gemini-embedding-001 model for generating text embeddings, including SDK usage, REST API patterns, batch processing, RAG integration with Cloudflare Vectorize, and advanced use cases like semantic search and document clustering.
Result: A 768-dimension embedding vector representing the semantic meaning of the text.
The model supports flexible output dimensionality using Matryoshka Representation Learning:
This skill provides complete coverage of Google Gemini embeddings API (gemini-embedding-001) for building RAG systems, semantic search, document clustering, and similarity matching. Use when implementing vector search with Google's embedding models, integrating with Cloudflare Vectorize, or building retrieval-augmented generation systems. Covers SDK usage (@google/genai), fetch-based Workers implementation, batch processing, 8 task types (RETRIEVAL_QUERY, RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY, etc.), dimension optimization (128-3072), and cosine similarity calculations. Prevents 8+ embedding-specific errors including dimension mismatches, incorrect task types, rate limiting issues (100 RPM free tier), vector normalization mistakes, text truncation (2,048 token limit), and model version confusion. Includes production-ready RAG patterns with Cloudflare Vectorize integration, chunking strategies, and caching patterns. Token savings: ~60%. Production tested. Keywords: gemini embeddings, gemini-embedding-001, google embeddings, semantic search, RAG, vector search, document clustering, similarity search, retrieval augmented generation, vectorize integration, cloudflare vectorize embeddings, 768 dimensions, embed content gemini, batch embeddings, embeddings api, cosine similarity, vector normalization, retrieval query, retrieval document, task types, dimension mismatch, embeddings rate limit, text truncation, @google/genai Source: jackspace/claudeskillz.
Facts (cite-ready)
Stable fields and commands for AI/search citations.
- Install command
npx skills add https://github.com/jackspace/claudeskillz --skill google-gemini-embeddings- Source
- jackspace/claudeskillz
- Category
- </>Dev Tools
- Verified
- ✓
- First Seen
- 2026-02-01
- Updated
- 2026-02-18
Quick answers
What is google-gemini-embeddings?
This skill provides complete coverage of Google Gemini embeddings API (gemini-embedding-001) for building RAG systems, semantic search, document clustering, and similarity matching. Use when implementing vector search with Google's embedding models, integrating with Cloudflare Vectorize, or building retrieval-augmented generation systems. Covers SDK usage (@google/genai), fetch-based Workers implementation, batch processing, 8 task types (RETRIEVAL_QUERY, RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY, etc.), dimension optimization (128-3072), and cosine similarity calculations. Prevents 8+ embedding-specific errors including dimension mismatches, incorrect task types, rate limiting issues (100 RPM free tier), vector normalization mistakes, text truncation (2,048 token limit), and model version confusion. Includes production-ready RAG patterns with Cloudflare Vectorize integration, chunking strategies, and caching patterns. Token savings: ~60%. Production tested. Keywords: gemini embeddings, gemini-embedding-001, google embeddings, semantic search, RAG, vector search, document clustering, similarity search, retrieval augmented generation, vectorize integration, cloudflare vectorize embeddings, 768 dimensions, embed content gemini, batch embeddings, embeddings api, cosine similarity, vector normalization, retrieval query, retrieval document, task types, dimension mismatch, embeddings rate limit, text truncation, @google/genai Source: jackspace/claudeskillz.
How do I install google-gemini-embeddings?
Open your terminal or command line tool (Terminal, iTerm, Windows Terminal, etc.) Copy and run this command: npx skills add https://github.com/jackspace/claudeskillz --skill google-gemini-embeddings Once installed, the skill will be automatically configured in your AI coding environment and ready to use in Claude Code or Cursor
Where is the source repository?
https://github.com/jackspace/claudeskillz
Details
- Category
- </>Dev Tools
- Source
- skills.sh
- First Seen
- 2026-02-01