pgvector-semantic-search
✓PostgreSQL 中使用文本嵌入进行语义搜索的 pgvector 设置和最佳实践
SKILL.md
Semantic search finds content by meaning rather than exact keywords. An embedding model converts text into high-dimensional vectors, where similar meanings map to nearby points. pgvector stores these vectors in PostgreSQL and uses approximate nearest neighbor (ANN) indexes to find the closest matches quickly—scaling to millions of rows without leaving the database. Store your text alongside its embedding, then que...
This guide covers pgvector setup and tuning—not embedding model selection or text chunking, which significantly affect search quality. Requires pgvector 0.8.0+ for all features (halfvec, binaryquantize, iterative scan).
Use this configuration unless you have a specific reason not to.
PostgreSQL 中使用文本嵌入进行语义搜索的 pgvector 设置和最佳实践 来源:timescale/pg-aiguide。
可引用信息
为搜索与 AI 引用准备的稳定字段与命令。
- 安装命令
npx skills add https://github.com/timescale/pg-aiguide --skill pgvector-semantic-search- 分类
- </>开发工具
- 认证
- ✓
- 收录时间
- 2026-02-01
- 更新时间
- 2026-02-18
快速解答
什么是 pgvector-semantic-search?
PostgreSQL 中使用文本嵌入进行语义搜索的 pgvector 设置和最佳实践 来源:timescale/pg-aiguide。
如何安装 pgvector-semantic-search?
打开你的终端或命令行工具(如 Terminal、iTerm、Windows Terminal 等) 复制并运行以下命令:npx skills add https://github.com/timescale/pg-aiguide --skill pgvector-semantic-search 安装完成后,技能将自动配置到你的 AI 编程环境中,可以在 Claude Code 或 Cursor 中使用
这个 Skill 的源码在哪?
https://github.com/timescale/pg-aiguide
详情
- 分类
- </>开发工具
- 来源
- skills.sh
- 收录时间
- 2026-02-01