gepa-demo
指導想要優化 LLM 提示的用戶。我們將與他們互動,了解他們的數據集和評分器要求,最後編寫 DSPy 代碼來優化他們的提示(使用 GEPA 算法的自定義實現)。
SKILL.md
Prompt optimization is the process of improving the quality of prompts used in language models. It is often done manually, but increasingly their are frameworks (such as DSPy) being used to use LLMs to do this.
In essence, the process involves the user providing a dataset and a grader or reward model to judge an LLM's output. A prompt's performance on the dataset is measured, the gaps in in its performance identified, and a new prompt is then proposed and tested. This runs in a loop until an end state is reached.
GEPA (which stands for GEnetic PAreto) is a prompt optimization algorithm that follows the process above. It is increasingly a popular approach to prompt optimization, and utilizes two key strategic choices compared to other algorithms:
可引用資訊
為搜尋與 AI 引用準備的穩定欄位與指令。
- 安裝指令
npx skills add https://github.com/raveeshbhalla/dspy-gepa-logger --skill gepa-demo- 分類
- </>開發工具
- 認證
- —
- 收錄時間
- 2026-02-01
- 更新時間
- 2026-02-18
快速解答
什麼是 gepa-demo?
指導想要優化 LLM 提示的用戶。我們將與他們互動,了解他們的數據集和評分器要求,最後編寫 DSPy 代碼來優化他們的提示(使用 GEPA 算法的自定義實現)。 來源:raveeshbhalla/dspy-gepa-logger。
如何安裝 gepa-demo?
開啟你的終端機或命令列工具(如 Terminal、iTerm、Windows Terminal 等) 複製並執行以下指令:npx skills add https://github.com/raveeshbhalla/dspy-gepa-logger --skill gepa-demo 安裝完成後,技能將自動設定到你的 AI 程式設計環境中,可以在 Claude Code 或 Cursor 中使用
這個 Skill 的原始碼在哪?
https://github.com/raveeshbhalla/dspy-gepa-logger
詳情
- 分類
- </>開發工具
- 來源
- user
- 收錄時間
- 2026-02-01