google-gemini-file-search
✓Build document Q&A and searchable knowledge bases with Google Gemini File Search - fully managed RAG with automatic chunking, embeddings, and citations. Upload 100+ file formats (PDF, Word, Excel, code), configure semantic search, and query with natural language. Use when: building document Q&A systems, creating searchable knowledge bases, implementing semantic search without managing embeddings, indexing large document collections (100+ formats), or troubleshooting document immutability errors (delete+re-upload required), storage quota issues (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises ($0.15/1M tokens one-time), operation polling timeouts (wait for done: true), force delete errors, or model compatibility (Gemini 2.5 Pro/Flash only).
Installation
SKILL.md
Google Gemini File Search is a fully managed RAG (Retrieval-Augmented Generation) system that eliminates the need for separate vector databases, custom chunking logic, or embedding generation code. Upload documents (PDFs, Word, Excel, code files, etc.) and query them using natural language—Gemini automatically handles intelligent chunking, embedding with its optimized model, semantic search, and citation generation.
Current Stable Version: 0.21.0+ (verify with npm view @google/genai version)
This skill prevents 8 common errors encountered when implementing File Search:
Build document Q&A and searchable knowledge bases with Google Gemini File Search - fully managed RAG with automatic chunking, embeddings, and citations. Upload 100+ file formats (PDF, Word, Excel, code), configure semantic search, and query with natural language. Use when: building document Q&A systems, creating searchable knowledge bases, implementing semantic search without managing embeddings, indexing large document collections (100+ formats), or troubleshooting document immutability errors (delete+re-upload required), storage quota issues (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises ($0.15/1M tokens one-time), operation polling timeouts (wait for done: true), force delete errors, or model compatibility (Gemini 2.5 Pro/Flash only). Source: ovachiever/droid-tings.
Facts (cite-ready)
Stable fields and commands for AI/search citations.
- Install command
npx skills add https://github.com/ovachiever/droid-tings --skill google-gemini-file-search- Source
- ovachiever/droid-tings
- Category
- #Documents
- Verified
- ✓
- First Seen
- 2026-02-01
- Updated
- 2026-02-18
Quick answers
What is google-gemini-file-search?
Build document Q&A and searchable knowledge bases with Google Gemini File Search - fully managed RAG with automatic chunking, embeddings, and citations. Upload 100+ file formats (PDF, Word, Excel, code), configure semantic search, and query with natural language. Use when: building document Q&A systems, creating searchable knowledge bases, implementing semantic search without managing embeddings, indexing large document collections (100+ formats), or troubleshooting document immutability errors (delete+re-upload required), storage quota issues (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises ($0.15/1M tokens one-time), operation polling timeouts (wait for done: true), force delete errors, or model compatibility (Gemini 2.5 Pro/Flash only). Source: ovachiever/droid-tings.
How do I install google-gemini-file-search?
Open your terminal or command line tool (Terminal, iTerm, Windows Terminal, etc.) Copy and run this command: npx skills add https://github.com/ovachiever/droid-tings --skill google-gemini-file-search Once installed, the skill will be automatically configured in your AI coding environment and ready to use in Claude Code or Cursor
Where is the source repository?
https://github.com/ovachiever/droid-tings
Details
- Category
- #Documents
- Source
- skills.sh
- First Seen
- 2026-02-01